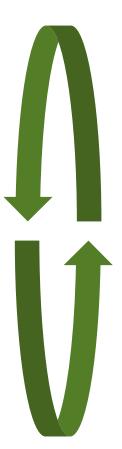
Circular Economy Principles

Barbara Englehart Management and Business Sustainability Consultant, Englehart Consulting Director of Business Sustainability, Leaders in Energy

University of the District of Columbia, Septmber 28,2017

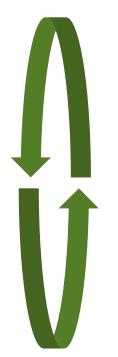

Circular Economy: an Overview

Coming Full Circle: A Workshop on Building the Circular Economy in the DMV Region

Circular Economy

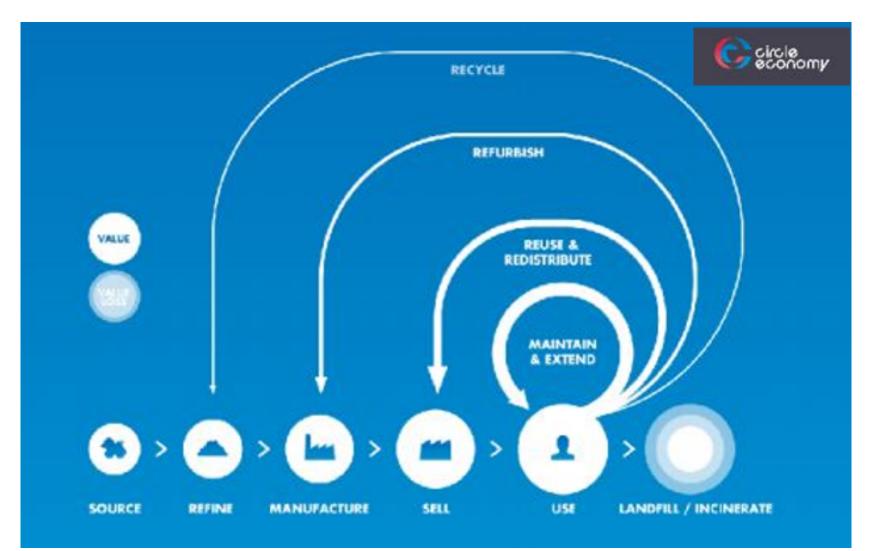
Transforming our Linear Processes

The circular economy refers to an industrial economy that is restorative, sustainable and collaborative by intention. It relies on renewable and <u>clean</u> resources: energy, water, materials, land. Through careful design, it aims to keep materials and products in circulation for very long cycles and eliminate waste.


Move from Tinkering to Redesigning

Moving from tinkering the current linear processes To rebuild and rethink to design waste out of the system

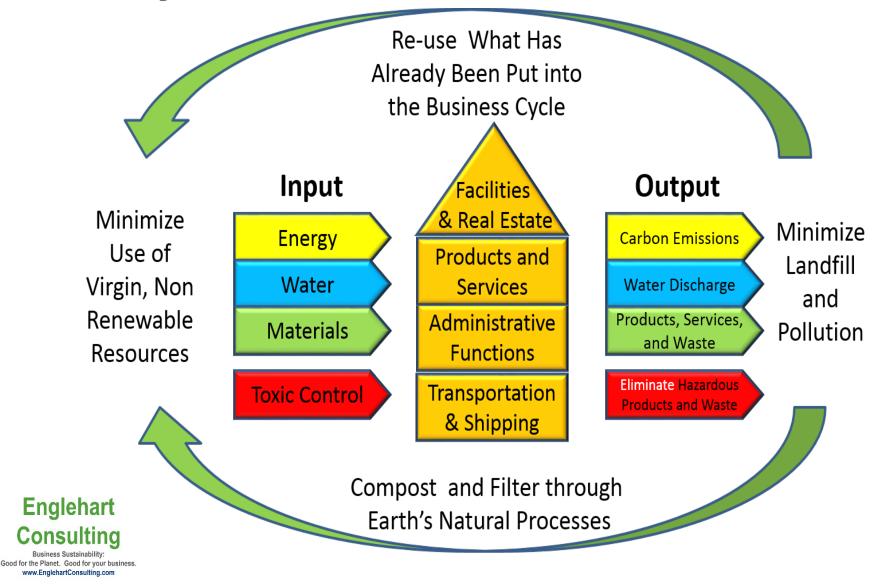
3 Traditional R's


Reduce Reuse Recycle

16 Regenerative R's

Rethink Redesign Reduce Redistribute Refuse Reuse Repair Return Restore Repurpose Remanufacture Rent Renovate Recover Rot Recycle

Maximize value by staying as close to the inner circle for as long as possible



The circular economy maintains and utilizes resource value for much longer

Circular Economy

Transforming our Linear Processes

Source: Englehart Consulting

Probing Questions to Consider

	Can you design waste out of this product or service?
	 Could you reduce resources used in this product or service?
DESIGN FOR	 Are there opportunities for efficiencies?
FULL	 Is disassembly possible?
	 Is this product even necessary?
LIFECYCLE	Could quality be improved to extend the useful life?
	• What would be the impact to the lifecycle cost?
	Are your procurement policies considering circular economy concepts?
INPUT IMPACTS	How could you increase the use of clean and renewable resources in the product or process?
OUTPUT	 Are there any toxic materials in the product?
UUIPUI	• Are there scarce or slow growing resources in the product? Fossil fuels?
	• Where was this product manufactured? Where did the input for the product come from?
	 Can you get it locally? Would that be possible?
	Where does this product fit in the "Value Circle"?
KEEP	 Can the product be re-used, refurbished, recycled?
MATERIALS IN	 Are there opportunities to divert waste from landfill?
	 Are there opportunities to compost?
THE BUSINESS	 Is disassembly possible?
CYCLE LOOP	 Could the product be repaired?
	 Could the materials be reused, remanufactured or recycled?
	• Are there options for reverse logistics to return the product when you are done with it?
	 Is there a process? Infrastructure? Alternatives?
	Are there any innovative technologies or platforms to enhance the product business model or
THINK	delivery?
SUSTAINABLY	 Sharing platforms
	 Product as a service
	 Warranties are offered on the remanufacture of refurbished products
	 Ownership of assets retained by the owner

Probing Questions to Consider

- Can you design waste out of this product or service?
 - Could you reduce resources used in this product or service?
 - Are there opportunities for efficiencies?
 - Is this product even necessary?
- How could you increase the use of clean and renewable resources in the product or process?
 - Are there any toxic material in the product?
 - Are there scarce or slow growing resources in the product? Fossil fuels?
- Where does this product fit in the "Value Circle"?
 - Can the product be re-used, refurbished, recycled?
 - Are there opportunities to divert waste from landfill?
 - Are there opportunities to compost?
 - Is disassembly possible?
 - Could the product be repaired?
 - Could the materials be reused, remanufactured or recycled?
- Could quality be improved to extend the useful life?
 - What would be the impact to the lifecycle cost?
- Are there any new technologies or platforms to enhance the product business model, or delivery?
 - Sharing platforms
 - Rental models
- Where was this product manufactured?
 - Can you get it locally? Would that be possible?
- Are there options for reverse logistics to return the product when you are done with it?
 - Is there a process? Infrastructure? Alternatives?
- Are there municipal programs to assist?
 - Health and safety? Disposal? Regulatory requirements?

Numerous Benefits of a Circular Economy

- Benefits include economic value creation), job growth, material savings, reduce dependency on virgin resources and resource price volatility, supply chain lock-in risk (stranded assets) and CO2 reductions.
- 2014 McKinsey study, "Toward a Circular Economy," found the economic gain from material savings alone is estimated at over \$1 trillion per year by 2025 if companies reorient toward circular supply chains that increase recycling, reuse, and remanufacture.

Englehart Consulting

Business Sustainability: Good for the Planet. Good for your business. www.EnglehartConsulting.com