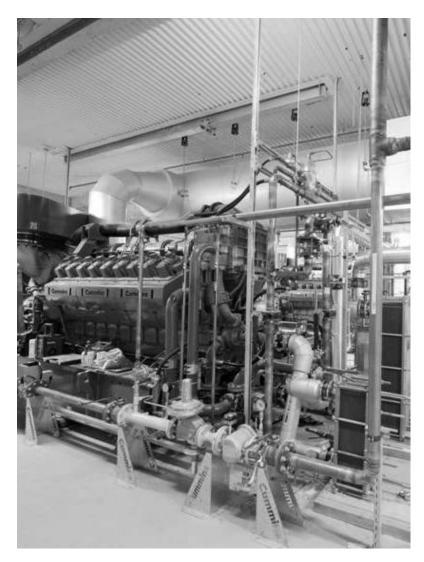
District Energy:

Private Multi-User Microgrids A Case Study in Innovation

Bracken Hendricks
President & CEO Urban Ingenuity
October 19th, 2017

District Energy Microgrids: Key Benefits

Reliability & Resilience:

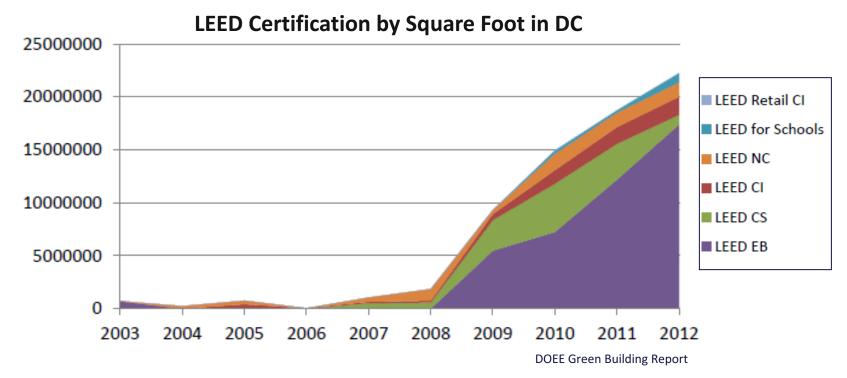

- Disaster Hardening
- Redundancy
- Power Quality

Environmental Sustainability:

- Lower CO2 Footprint
- Integration of RE
- Efficiency Platform

Financial Benefits:

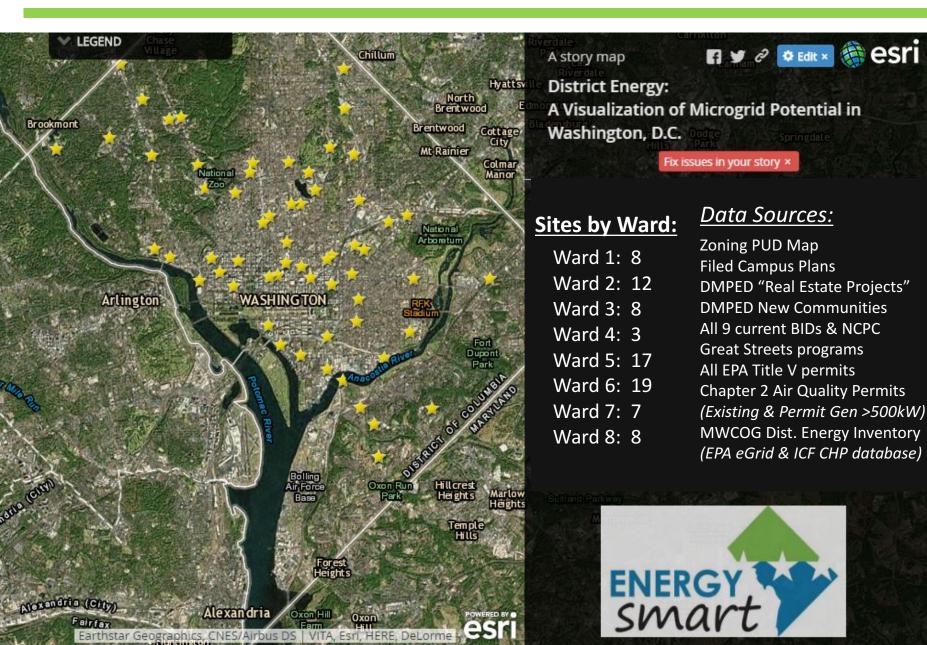
- Reduced Capital Costs
- New Revenue Streams
- Transforms Costs to Assets



Financial Benefits: Marketing & Leadership

- Build resilient and more profitable developments
 - Those that only offer generic grid power may be left behind
- Analogy: LEED used to be risky but potentially forward-thinking
 - Now if you're not LEED, you can't compete in the Class A market

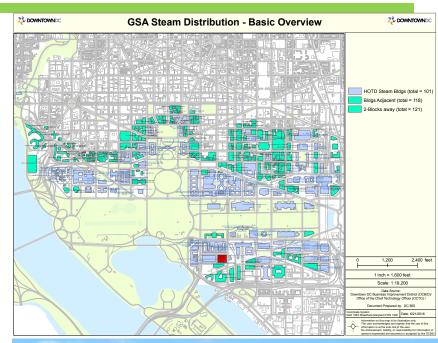
Case Study: Microgrid vs. Central Systems


Lower First-Cost, Extra Space:

- Eliminate centralized boilers & chillers
- Eliminate rooftop cooling towers & condenser water treatment
- Eliminate standby generators & fuel-oil systems
- Reduce sub-contracting & construction management overhead
- Reduce commissioning time & expense
- Smaller total space requirements
 - √ Capital Cost Reduction: \$5/sf
 - ✓ Operating Cost Reduction: \$0.60/sf/yr

Washington DC: Project Identification

Urban Ingenuity

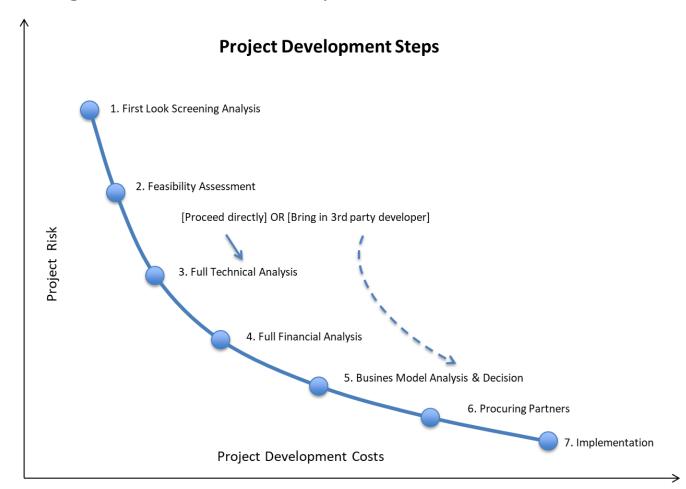


Three year grant from DOEE to assess microgrid feasibility in Washington DC

- Site screening tools
- Policy support
- Microgrid "Extension Services"

Additional work for New York City Mayor's Office of Recovery & Resilience, US GSA, Metropolitan Washington COG

- Optimization of St. Elizabeth's plans
- Microgrid RFP for Walter Reed
- Market potential for GSA HOTD plant
- Evaluating 10 microgrid sites in NYC

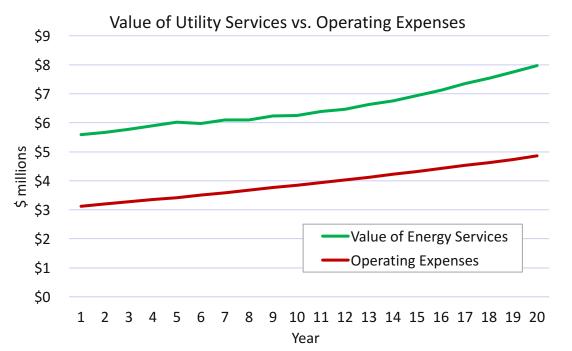


Risk vs. Development Cost Trade-Off

- Project risk declines with continued investment in analysis and development
- Earliest stages can often be accomplished with limited investment

Project Development Risks

Owner Concerns	Structuring Solutions
Emerging Regulatory Framework	Open PSC Cases & Pilot Projects, Contractual Solutions
Capping Performance Risk	Performance Guarantees
Preserving the Upside	Shared Savings Agreements & Aligned Incentives
Guaranteeing Market Pricing	Contractual Agreements & Benchmarking
"Future Proofing"	Grid as Framework for Ongoing Improvement


Key Finding: Questions are solvable & benefits are real.

Phase I: Core Microgrid Design

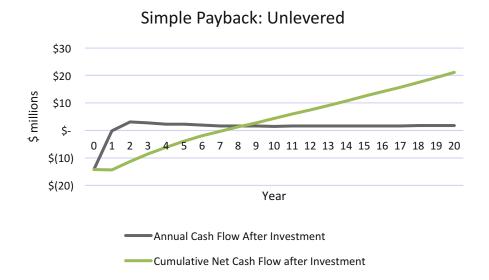
- Site Profile: 100 acre campus-style development with single site-owner, existing distribution infrastructure
- Project Conceptual Design: 4 MW CHP, 1.5 MW solar PV, controls and automation
- Project Cost: \$18 M
- Conclusion: A viable microgrid is possible, with value of benefits consistently exceeds operating costs

Phase I: Is it Economically Viable?

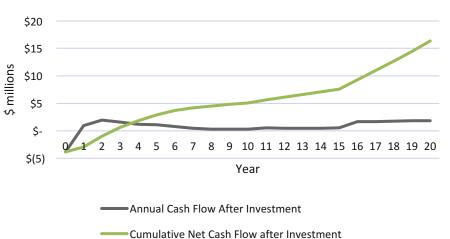
Unlevered

NPV: \$8 M

IRR: 11% IRR


- 20-Year Net Cash Flow: \$21 M
- Greater NPV & overall returns

Levered


NPV: \$7 M

IRR: 29%

- 20-Year Net Cash Flow: \$16 M
- Faster path to cash flow positive; higher IRR

Cumulative Cash Flows: Levered

Phase III: Further Optimization

Optimizing Projects Yields More Significant Financial Returns

- Opportunities to optimize for lower cost, higher savings:
 - Chilled-water storage
 - Avoided costs of heating & cooling equipment
- Additional possible savings from:
 - Sales to wholesale markets
 - Ancillary services to Pepco grid
 - Serving surrounding loads
 - Accessing grants, incentives, creative financing

Contact Info:

Bracken Hendricks CEO, Urban Ingenuity info@urbaningenuity.com

Extra Slides:

Microgrid Value Stacks

Energy
Revenues &
Incentives

New Revenue
Streams

Community Amenities

Heating, Cooling, Electricity

1st Cost Savings,
Design Opportunity

LEED Points, PEER, Marketing Gains

Credits & Incentives: ITC, MACRS, SRECs

Grants,
PACE, lowcost \$\$\$

Grid Sales, Real Options Reliability, Premium Power CO2 & Green Impacts

Resilient Neighborhoods

A Typical Washington DC Microgrid

- Loads: One or more property owners (new, renovated, or existing buildings), roughly contiguous
- **CHP:** Co-generation fueled with natural gas, methane, or biomass
- Solar PV: Predominantly rooftop
- Back-up generation: Existing or new diesel / gas generators
- Thermal distribution: May include hot water, chilled water, steam, and thermal storage
- Electric distribution

Technical & Financial Analysis

Steps should be conducted in parallel.

Full Technical Analysis for Optimized Design

Deeper Design Diligence and Customization

Detailed design with solid cost estimates, integration with site planning, project phasing, and optimization based on 8760 load data.

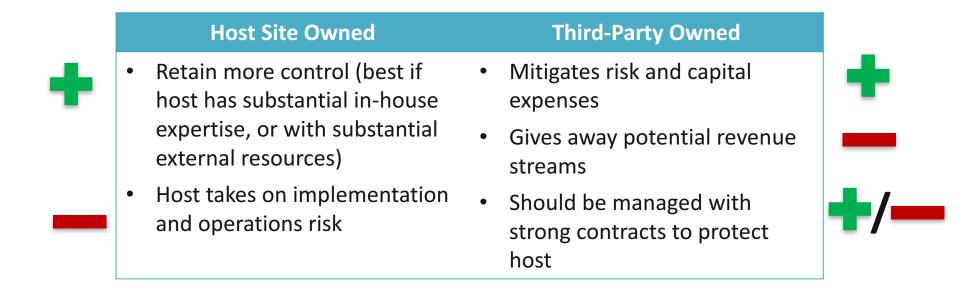
Outcome: Optimized system design sufficient to resolve all technical concerns.

Full Financial Analysis for Optimized Design

Investment Grade Financial Modeling

Advanced revenue modeling integrated with an approach to organizing debt, equity, and financial structure, demonstrating sufficient returns to project partners.

Outcome: Financial model providing sufficient detail to solicit formal participation of capital partners.



Business Model Decision

Who will own and manage the project?

Choose an ownership model to allocate risks and corresponding returns.

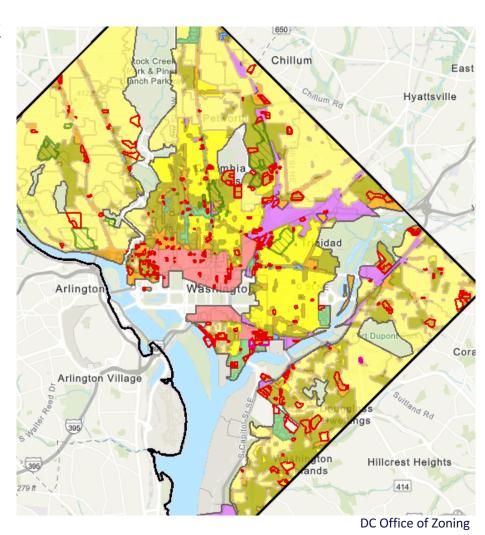
Outcome: Structuring decision and key contractual agreements to memorialize.

Other ownership models: Multi-stakeholder (shared ownership), publically-owned

Microgrid Business Models

Precedents & Innovations in Service Delivery Models

Commercial Structures	Precedents & Analogues
Municipally Owned Services	DC Water, Public Power
Energy Services Agreements (ESA)	Solar City PPA
Microgrid-as-a-Service with Price & Performance Guarantees	Energy performance contracting, Cloud Computing - Software-as-a-Service
Shared Infrastructure	Central parking structure
Microgrid operator hired by Home Owners Association (HOA)	Outsourced Contracts for Building Management, Landscaping, etc.


Designing & Optimizing a Microgrid

This case study provides a framework for understanding the economics of a microgrid in the District of Columbia.

Key lessons:

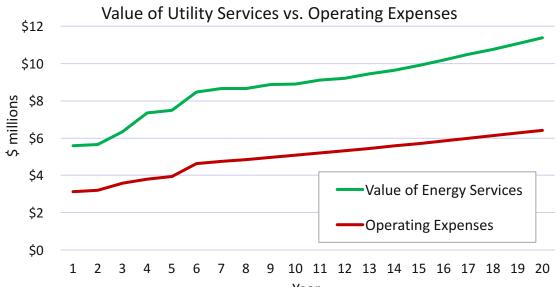
- Determine viability for a core site
- Explore expansion to serve neighboring loads on a marginal cost basis
- Further optimization to improve efficiency and economics

Note: Case study is based on actual analysis conducted for a District site-owner. Numbers have been simplified for illustrative purposes.

Phase I: Is it Economically Viable?

Financial Analysis Assumptions

Unlevered		
Leverage: Debt/Equity	100% Investment	
Term of Debt	None	
Commercial Interest Rate	None	
Discount Rate (for NPV)	5% = Site Owner Cost of Capital	


Levered		
Leverage: Debt/Equity	70% / 30%	
Term of Debt	15 years	
Commercial Interest Rate	7%	
Discount Rate (for NPV)	7% = Commercial Rate	

Phase II: Expansion Microgrid Design

- **Site Profile**: Parcels adjoining main site (independently owned) could opt in to the microgrid during a planned redevelopment.
- Project Conceptual Design: Additional 4 MW CHP, 600 kW solar PV, new distribution infrastructure.
- Project Cost: Additional \$10 M (\$28 M total)
- Additional Concerns: Determine if multi-user microgrid permissible from a legal / regulatory perspective.
- Conclusion: Later phases can be implemented on a marginal cost basis, improving the economics / energy efficiency of the larger system.

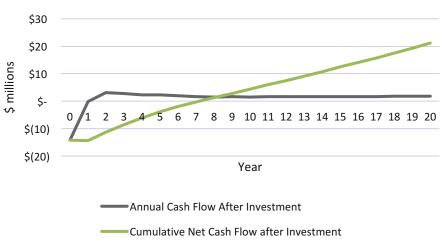
Phase II: Is it Economically Viable?

Unlevered

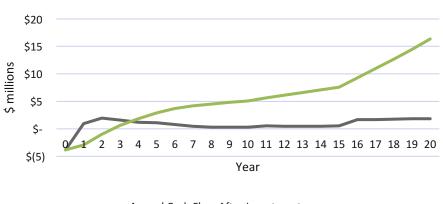
NPV: \$11 M

IRR: 11% IRR

- 20-Year Net Cash Flow: \$31 M
- Greater NPV & overall returns


Levered

NPV: \$8.5 M


• IRR: 25%

- 20-Year Net Cash Flow: \$23 M
- Faster path to cash flow positive

Simple Payback: Unlevered

Cumulative Cash Flows: Levered

Annual Cash Flow After Investment

Cumulative Net Cash Flow after Investment

Old and New Paradigms

Old World:

- Utility has full control
- Buy brown power or buy RECs
- Rate increases year after year
- At risk: cyber-attacks, heat waves,
 100-year storms, terrorism

Matthew D. Wilson (LtPowers)

New World:

- On-site resource = security & flexibility
- Smaller carbon footprint
- Lower energy costs, new revenues, and controllable costs
- Grid outages? What grid outages?

Spotlight Solar

Gallaudet: Campus Microgrid Planning

